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Some Results Concerning Voronoi's Continued 
Fraction Over 2(T) 

By H. C. Williams 

Abstract. Let D be a cube-free integer and let eo be the fundamental unit of the pure cubic 

field 2(V?D ). It is well known that Voronoi's algorithm can be used to determine eo. In this 

work several results concerning Voronoi's algorithm in 2 (_ ) are derived and it is shown 
how these results can be used to increase the speed of calculating eo for many values of D. 
Among these D values are those such that D (> 3) is not a prime _ 8 (mod 9) and the class 

number of 2(V? ) is not divisible by 3. A frequency table of all class numbers not divisible 

by 3 for all 2(V? ) with D < 2 x 1iO is also presented. 

1. Introduction. It is well known (see, for example, Perron [9]) that if 4 is a given 
real number and if we define 40 = qo = [k0],* kn+i = (,n - qn) q,q1 = 

(n=0,1,2,3,. ),then 

1o + 

qq + 

q2 + 1 

qn-I + q 

is the continued fraction expansion of +. We denote this by the less cumbersome 

= <qO, ql, q2 ... * qn-1, On>, 

If A-, =B2 = 1, A-2 = I= 0 and Ar+i = qr+jAr + Ar_i, Br+i = qr+lBr + 

Br (r =-1, 0, 1, 2, 3, ...), we have 

An 

B= <q?, ql, q 2' * qn>- 

Let d be a square free positive integer and let d = X. In this case we have 

Pn + id 
n 

- 
Qn ' 
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where 

Qo=1, Po=0, qo=[V] and 

Pr+ I = qr Qr -Pr, Qr+lI = (d -Pr2+ ) /Qr (r = O, 1, 2, 3, . .. ) 

Let 2(Vdi ) be the quadratic field formed by adjoining Xd- to the rationals B. If 
N(a) is the norm of a E 2(Vd ) (N(a) = aa, where a is the conjugate of a), then 

N(An + xd/ Bn) = An dBl = (- 1)n'Q+1. 

Also, there always exists a least nonnegative integer s such that Qs +l = 1. If q1o 
(> 1) is the fundamental unit of (d ), then 

qo = As + id- B, or q3 = A, + Vd B. 

The latter case occurs only when d > 5, d _ 5 (mod 8) and Qk+I = 4 for some 
k < s/2. In this event 

(1.1 ) 71O = (Ar + Vid Br)/2, 

where r is the least positive integer such that Qr+ I = 4. 
When N(,q) = + 1 (and no r as defined above exists), it is known that P, = Pj+I 

for a minimalj > 1. In this case we have s = 2j and 

(1.2) ?lo = (Aj_ + By1)2/Q; 

(see Williams and Broere [12]). Thus, in order to determine 'qO it is never necessary 
to go beyond q,12 in the determination of the continued fraction expansion of \/d . 
Note that Qj I 2Pj and therefore [9, p. 107] Qj I 2d. In fact, Qj is a principal factor 
of the discriminant of [Vd ] (see Barrucand and Cohn [1]). 

In this paper we consider the pure cubic field 2( ), where D = ab2 is cube 

free and a, b are coprime integers. If 0 E 2(V ), then 0 = (cl + C28 + C30)/C4, 

where 3 = ab2, 3 = a2b, Cl, C2, C3, C4 E , (the set of rational integers). Also, we 
define the norm of 0 (written N(0)) to be N(0) = 00'0", where 

0' = (Cl + C2W8 + C3W2&)/C4, 0" = (Cl + C2W208 + C34)/C4, 

and X is a primitive cube root of unity, i.e., an arbitrary but fixed zero of 
x + x + 1. 

Let Eo (> 1) be the fundamental unit of 2(8). The usual continued fraction 
algorithm described above is not very useful for determining Eo. (It can be used to 
find Eo, however, when any nontrivial unit is known; see Jeans and Hendy [8]). In 
1896 Voronoi [11] described an extension of the continued fraction algorithm 
which can be used to find Eo. A version of this algorithm is described in detail in 
Williams, Cormack, and Seah [13]. In this paper we extend the earlier work of 
Williams [14] by developing some further results concerning Voronoi's continued 
fraction algorithm which are analogous to the results (1.1) and (1.2) above. It will 
be seen that these developments allow us to increase the speed of calculating eo for 
many values of D and certainly for those values of D (> 3) such that D is not a 

prime _ 8 (mod 9) and the class number of 2(2fD' ) is not divisible by 3. We also 
present a frequency table of all class numbers not divisible by three for all ( 

3 

such that D < 2 x 105. 
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2. Preliminary Results Concerning 2(8). We first require some well-known 
results on pure cubic fields. 

If D I ?1 (mod 9), then [1, 8, 9] is a basis of the ring of integers 2 [8] of 
2(8), and the discriminant A of 2(8) is -27a2b2. If D-?1 (mod 9), then 
[1, 8, (1 + ad + b6)/3] is a basis of 2[8] and A = -3a2b2. Thus, if xI, X2, x3, 
a E 'Z, g.c.d.(xl, x2, X3, a) = 1 and a = (x1 + X28 + X38)/a E 2Z1[], then a = 1 
when D m? ? (mod 9) and a = 3, x Iax2= bx3 (mod3) when D _ ?1 
(mod 9). Further, N(a) E Z and 

(2.1) a3N(a) = x3 + ab2x 3 + a2bx3 - 3abx1x2x3. 

If e E 2[8] and N(e) = 1, we say that E is a unit of 2(8). Further, E = 

where n E F. If 3 1 D, put S = fAI/27; otherwise put S = fAj/3. S is simply the 
square of the product of all primes p E , such that the principal ideal [p] = P3, 

where P is a prime ideal of 2[8] and the norm of P, N(P), is p. It should also be 
noted that if 3 f S, then [3] = pQ2, where P, Q are distinct prime ideals of 2[6] 
and N(P) = N(Q) = 3. 

We now present three simple lemmas which will be needed in the work that 
follows 

LEMMA 2.1. Let a = x1 + X28 + x36, where X1, X2, X3E. 
(a) If 3 j D, then 3 | N(a) if and only if xl + ax2 + bx3 0 (mod 3). 
(b) If 3 j D and D I ?1 (mod 9), then 9 j N(a) if and only if xl -ax2 bx3 

(mod 3). 
(c) If D =-?1 (mod 9), then 3 1 a if and only if xl ax2 bx3 (mod 3); also, if 

27 1 N(a), then a'a"/3 E 2[8]. 

Proof. The first of (a) follows easily from (2.1) with a = 1. To prove (b) we first 
note that a'a" E 9[46] and 

a'a" = (xl-abx2x3) + (ax 3- xx2)6 + (bx -x1x3)t5 a2 (mod 3). 

Since [3] = P3, we have aa'a" 0 (mod P6), and a'a" = a2 (mod P3); thus, 
a 0_ (mod p2) and 31 a'a". It follows that 31 x2 - abxjx3, 31 ax2-_ 
3 1 bx22 - x1x3, and therefore xl ax Ibx3 (mod 3). 

The proof of the first part of (c) folloWs easily from our previous remarks 
concerning the integers in 6[8]. To prove the second part, we note that [3] = pQ2, 

aa'a= 0 (mod p3Q6), a'a" = a2 (mod PQ2). Thus, a'a" 0_ (mod PQ2) and 
a'a"/3 E= 2[8]. J 

LEMMA 2.2. If a = (x1 + X28 + X38)/a E 298], t3 I N(a), and t I S, then 
g.c.d.(x1, X2, X3) 0 0 (mod t). 

Proof. See Lemma 2 of [14]. 

LEMMA 2.3. Let a E 2[8] and let t = ef2, where e = eje2, f = f1f2, and elf, j a, 
e2f2 I b. If t I N(a), then 

la 8a 
e2f ' elf 2[] 
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Proof. From (2.1) and the fact that ef I ab, we have f I x1, e I x1, fi I X2, f2 I X3; 
thus 

aOa = x18 + x2bO + x3ab 0 (mod e2f), 

a8a = x18 +x2ab + x3aO 0 (mod elf). 

Since (a, ab) = 1, the lemma follows. EO 
It is easy to see that if a E f2l8] and N(a) I S, then a3/N(a) E 2[8]. If such an 

a exists and IN(a)l # 1, ab2, a2b, we say that IN(a)I is a principal factor of the 
discriminant A; cf. [1]. Since N(a3/N(a)) = 1, we see that the determination of a 
unit of 2 (8) is a simple matter when such an a is known. Several results 
concerning the existence of these principal factors can be found in Barrucand and 
Cohn [1], [2], Brunotte, Klingen, and Steurich [4], and Halter-Koch [6]. 

LEMMA 2.4. Let a E ([8] and suppose N(a) I S. Put N(a) = 3Tdld4d22d52, where 
a = d,d2d3, b = d4d5d6. If 

A3 = 3r minf dld4d22d.2, d3d5d2d62,d2d6d42d32} 

then / = Aa/N(a)1/3 E 2[8]. Further, N(8) 1 S and, if we put N(,8) = 3mnn2, 
where m = m1M2, n = nln2, mlnl a, m2n2 l b, then 

> 
m2n mln 

Proof. Let KI = d1d3d62/d4d5d22 = (8/d2d4d5)3 K2 = d32d5d6/d,d2d2 = 

(6/d1d2d5)3. We have N(f3) = A3 and A3/N(a) = min{1, KI, K2); hence, by Lemma 
2.3, we have 38 Ep 2[8]. Also, ((8/M2n)3, (/r/mjn)3) is one of {K I, K2), 

{K2Ki, 
I 

jK1), {K21, KIK}'). If A3/N(a) = 1, then (8/m2n)3 = K' > 1 and 
(6/r1n)3 = K2 > 1; if A3/N(a) = KI, then (8/M2n)3 = K2K1 > 1 and (8/rmn)3 = 

KI > 1; if A3 /N(a) = K2, then (/m2n)3 = K2 > 1 and (i/rlmn)3 = KIK21> 1. 

Thus, if we can find a E 6[8] such that N(a) I S, we can easily find ,8 E 2[8] 
such that N(/8) I S, N(/3) = 3Tmn2 M = mIm2, n = n1n2, mrn, n a, M2n2 I b, and 

6/M2n, 6/rmn > 1. Since (Vb) = Z( WA), we can assume without loss of 
generality that a and b are such that 

Yl = 8/M2n <72 = 6/rmn. 

For, if this is not the case, we can simply interchange the values of a and b, ml and 
m2, and n1 and n2. 

We conclude this section by pointing out that if a E 2[8], d = N(a) I S and 
N(a) = 3d1d22d4d.2, where d1, d2, d3, d4, d5, d6 are defined as above, then, by Lem- 
mas 2.2 and 2.3, the six numbers 

da da a2 6a2 ga2 
a, 

2,d2,dl d2d4d5 d1d2d5 d2d5 d2d5d1d4 d2d5d1d4 

are all in 2[8] and their norms all divide S; thus, as noted in [1], each of the 
elements of the set 

(2.2) {3Td1d22d4d.2, 3rd,2d3dd62, 3Td2d32d42d6, Ydj2d2d42d., 3'd22d3d4d62, 3 d,d32d.2d6 
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where 
0 when = 0, 

v= I T 2, 
2 T 1, 

is a principal factor whenever d is. We call this set a principal factor set. If t is the 
number of distinct prime factors of S, there are (3' - 3)/6 sets of the form (2.2) 
but there can be at most one principal factor set; see [1]. 

3. Relative Minima. We first summarize some of the basic ideas concerning 
relative minima over a pure cubic lattice. For a more detailed discussion of these 
ideas see [13], [11], Delone and Faddeev [5] and Steiner [10]. 

Let a = 2(8) and consider the ordered triple 
/ a'-a" a' + a" ) 

A a, 2i ' 2 } 
where i2 = -1. Since A is uniquely determined once a is known, we often identify 
A with a and write A a or a A where the lower-case letter refers to the 
element of 2(8) and the upper-case letter to the corresponding ordered triple. Let 

vE 2(8)andlet 
= {A I A >x + y,t + zv, x,y, z e S). 

We say that 6t is a lattice with basis [1, ,u, v]. 
We say that e 0 e E (8) is a relative minimum of % if e E 6 and there does 

not exist 1 (# (0, 0, 0)) E 6R such that 11 < 101 and 0'0" < O'O". If E and 4) are 
relative minima of 6 with 0 > 4, we say they are adjacent relative minima of ' 

when there does not exist P (=# (0, 0, 0)) E 6R such that 141 < 101 and 4/4" < 
4'+". If 0, Z 0, E 6 (i = 1, 2, 3,... ., n,. .. ), i+ I > 0,, and Oi, ei + are adjacent 
relative minima, we call the sequence 
(3.1) e1,e 02 03, ... 9 Ong .., 

a chain of relative minima. If ei precedes Ej in such a chain we say that ei is less 
than E>. It is easy to see that if D is any relative minimum of 6R and 4 > 0A, then 

4) = Ok for some k. 
In [11] Voronoi presented a method of finding a chain of relative minima when 

El = (1, 0, 1) is a relative minimum of 6J. This technique is simply a means of 
finding in any such lattice a relative minimum eg adjacent to (1, 0, 1). Here we 
shall concern ourselves with finding eg z Og such that Og > 1. Let 6K1 = 6 and let 
O') -z0 A(') be the relative minimum adjacent to (1, 0, 1) in 6t1 with 0 (') > 1. 
Embed 1, 9(') in a basis of 6,1 and let this basis be [1, O9(), 0(,1)]. Let 6 have basis 
[1, I/0 (1) o (1)/ 01). We see that (1, 0, 1) is a relative minimum of 6iP2 and find the 
relative minimum eg2) 0 (2) > 1 adjacent to (1, 0, 1) in 6. We continue this g g jcn 
process by defining 6A+% to be the lattice with basis [1, 1/98(', O9(')/ O())] where 
Ogl) - 09g) > 1 is the relative minimum adjacent to (1, 0, 1) in 6A and [1, 9 (I) 9 (i)] is 
a basis of 6-3i. It follows that On t n, where 

n-I 

n= I 09(i), 4(r) = (mi + m28 + M367)lUr 
i = 1 

Oh) - (n, + n26 + n3 )/ar, 

mI, M2, M3, n1,, n3, n3r E ?, or > 0 and g.c.d.(ar, mI, M2, M3, n,, n2, n3) = 1. 
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From now on we shall assume that 6At is the lattice with basis [1, ,u, v], where 
[1, ,u, v] is an integral basis of 2[8]. We note that (1, 0, 1) is a relative minimum of 
6J and so is E c c, where c is any unit of 2(8). Thus, since this algorithm gives us 
a method of finding all relative minima 9 such that 0 > 1, it can be used to find C0. 
If we put er = m2n3 - n2m3, by Theorem 3.1 of [13], we have N(0r) = ar2l/erla. 
Thus, if r (> 1) is the least integer such that qr2 = lerIa, then c0 = Or. 

When D ? ?1 (mod 9), let 6Ri be the lattice with basis [1, 8, 6]. If Eo;z c0 and 
Eo E' 6, then Eo is certainly a relative minimum of 6At. If, however, Eo 4 6A, 
then Ko Ko = 3 0 is always in 6A, but it is not clear whether or not Ko is a 
relative minimum of kR. In fact, if D = 44, then c0 = (4007 + 11358 + 6438)/3 
and Ko Z Ko = 4007 + 11358 + 6436 is not a relative minimum of 6Jt1. In Theorem 
3.1 we show that D = 44 is the largest D value with a > b such that Ko is not a 
relative minimum of 6jI. 

THEOREM 3.1. If D ? 1 (mod 9), 0/3 E 2[8] and N(O) = 27, then e (0 0) is 
a relative minimum of 'Rt whenever a > b and D > 44. 

Proof. If e is not a relative minimum of kR, then there must exist y Z rE 6E1 

such that 0 < y < 0 and y'y" < O'O". Since 0/3 E- 2[8], we have O'O"/9 E 2[8]; 
therefore, if p = O'O"y/3 = 9y/0, then p = xl + X28 + x36, where xl, X2, X3 E 
Z. Also, since p E 2[8] and 3 I p, we have xl ax2- bx3 (mod 3) by Lemma 2.1. 
Since IPI < 9 and IP'I = IP"I < 9, we have Ix11 < 9, 6Ix21 < 9, 6Ix31 < 9. It follows 
that if 8 > 9 and 8 > 3, then X2 = x3 = 0 and x10 = 9y; that is, 9 I xl and 
therefore xl = 0 and 9 is a relative minimum of 6At. This will certainly be the case 
when b > 9; thus, there are only four possible values for b such that e might not 
be a relative minimum of 6JIR. These are 1, 2, 5, 7. If b = 1, then D > 44 means 
that a > 44,8 > 3 and > 9. If b = 2 and a 11, then, since a +2 (mod 9), 
we must have a > 29; if b = 5, then a- ?4 (mod 9) and a > 14; if b = 7, then 
a ? +2 (mod 9) and a > 11. In all of these cases we see that 6 > 9 and > 3, 
and the theorem now follows. O 

If D- ?-1 (mod 9), 9 (; 0) is a relative minimum of 65i and N(0) = 27, it 
does not necessarily follow that 0/3 E 2[8]. For example, when D = 62, and 
0 = 15 + 48 + 6, we have 9 (; 0) a relative minimum of 'Rt and 0/3 M4 2[8]. 
There is, however, a simple method of determining when a given r (Z Opr) in the 
chain (3.1) of 6:lt is such that 0r/3 E- 2[8]. We give this as 

THEOREM 3.2. If er (O 9r) is in the chain (3.1) of relative minima of '%t with 
01 = (1, 0, 1) and 27 I N(0), then 0r/3 E 2[8] if and only if 3 1 (or/lerl). 

Proof. The proof of this result makes use of the methods of Theorem 3.1 of [13]. 
Let y = 8= g + g26 + g36 and let [1, 1r4 vr] be a basis of r. We have 

Let~~~~~~~~ -y = Or r" = |1 + 2 9 
[ii; =j=[T , 

where T is a 3 x 3 matrix (tOU)3 x 3 with ti, E and I TI = 1. Thus, 

Or= tll + t126 + t134 OrI4r = t21 + t228 + t236, 

r Vr= t31 + t328 + t336 
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and 

N(Or) = (g, + g28 + g4)(tII + t128 + tl3g) 

N(Or)IAr = (g1 + g28 + g38)(t21 + t228 + t23$) = U1 + U28 + u38, 

N(O,)v, = (g1 + g28 + g38)(t31 + t328 + t33g) = v1 + v28 + v38. 

This can be written as 

27k 0 0 1g g2 g3' 
(3.2) ul U2 U3 =T Dg3 g1 g2 

Vl V2 v3J Dg2 Dg3 g1J 

where k = N(Or)/27. Taking determinants of both sides of (3.2), we get 

27k(u2v3 - U3V2) = ?N(Or)2 2 ?272k2 

and U2V3 - U3V2 = +27k. If we put 
d = g.c.d. (u,, U2, U3, VI, v2, v3, 27k), 

we have a, = 27k/d and er = +27k/d2. 

If 6r/3 E 2[8], then g9-92 931 0 (mod 3) and therefore 3 I d. Since d = 
Gr/IerI, we have 31(ar/Ier). 

If, on the other hand, 3 1 (r/IerI), then 3 1 U3 and 3 1 V3. Hence, from (3.2) we 
have TG 0 O (mod 3), where 

G= 9g2. 

Since 27 is a divisor of N(Or), we must have 3 1 O, O,!'; hence, g1- ag2 -bg3 (mod 3) 
by Lemma 2.1. If 3 1 g,, then I TJ 0 (mod 3), which is not true; thus gI- - 

0 (mod 3). It follows that t1, _ at2 -bt13 (mod 3) and r/3 E= 2[8]. EO 
We now have a result analogous to (1.1) in the following 

COROLLARY. If D - +1 (mod 9) (D > 44) and or (t (4) is the first element of 
the chain (3.1) of relative minima of 'q with t31 = (1, 0, 1) such that N(Gr) = 27 and 

31(a,/IerI), then c0 = 0r/3. 

If we could find a relative minimum @ (, 9) of 6I such that N(9) I S, then, 
since N(03/N(O)) = 1, we could possibly shorten the labor needed in determining 
e0. There are, however, certain divisors of S such that if N(a) is one of these 
divisors, then A a cannot be a relative minimum of 6A1. As we see in Lemma 3.3. 
two of these divisors of S are ab2 and a2b. 

LEMMA 3.3. If a E 2[8] and N(a) = ab2 or a2b, then A (w a) cannot be a relative 
minimum of 6RI. 

Proof. If N(a) = ab2, put 8 = aO/ab; if N(a) = a2b, put 8 = aO/ab. By 
Lemma 2.3, we must have /8 e 2[8J. Since 86 = ab, we have 0 <,8 < a and 
,/',8" < a'a". It follows that A cannot be a relative minimum of 6AI. O 

Indeed, if N(a) I S and /8 is defined as in Lemma 2.4, then A (; a) cannot be a 
relative minimum of 9RtI whenever a 7# /3. In Theorem 2 of [14] it was shown that if 
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D ?+1 (mod 9) and T = 0, then B z 38 is a relative minimum of 9IR. In much of 
the work that follows we will assume that either T > 0 or a = 3 when T = 0. 

THEOREM 3.4. Suppose there exists a (> 0) E 2[8] such that N(a) I S, 3' 11 N(a), 
and either T > 0 or a = 3 when T = 0. Let /3, m, n, Y I 72' (y2 > y,) be defined as in 
Lemma 2.4. Then B (; /3) is not a relative minimum of 61 if and only if there exists 
a nonzero ,u E ?2[8] such that y = mn2x, where X = XI + X2Y1 + X3Y2 (XI, X2, X3 
E Z) and 

3.3f a) Xl + am2nX2 + bm,nX3= 0 (mod 3) when X- =2, 

(33) |b) XI am2nX2 _ bm,nX3 (mod 3) when T = 1 or 0, 

(3.4) ? < x < 3, 

(3.5) F() = X+ X2 + Y22X32 - YIXIX2 - Y2XIX3 - Y1Y2X2X3 < 9 

Proof. If B is not a relative minimum of 6, there must exist 4 E ?[8] such that 
0 < 0 < 8 and 0'0" < /',8/". If we put p = N(/3)p// Ei 2[ 8], we have 

(3.6) 0 < p < N(/3), 

(3.7) IP'I = IP"I < N( ,p), 

(3.8) N(p) = N( p)2N(4). 

If 
p = (X1 + X28 + x3&)/a, (xI, X2, x3 E F), 

we have mnn2 1 xl, mIn I x2 and m2n I X3 by (3.8), Lemma 2.2, and Lemma 2.3. 
If a = 3, then D ?1 (mod 9) and T = 0. If we put Xl = xI/mn2, X2 = 

x2/m,n, X3 = x3/m2n, we see that ,u = 3p, XI am2nX2 bm1nX3 (mod 3) 
(Lemma 2.1) and 0 < X < 3, F(X) < 9 by (3.6) and (3.7). 

If a = I and T = 1, we find that it = p and 0 < X < 3, F(X) < 9, where Xl, X2, 
X3 are defined as above. Further, since 9 1 N( t) (from (3.8)), we must have 

XI _ am2nX2 -bmI nX3 by Lemma 2.1. 
If a = 1 and T = 2, then 81 1 N(,t) and 3 1 xl, 3 1 x2, 3 1 X3 by Lemma 2.2. 

Putting XI = x1/3mn2, X2 = x2/3m,n, X3 = x3/3m2n, we get it = p/3, 0 < X < 

3, F(X) < 9. Since N(,t) = N(p)/27 and 81 1 N(ut), we have 3 | N(ut); hence, 

XI + am2nX2 + bmInX3 0 O (mod 3) by Lemma 2.1. 
Now suppose that ,u as described by the theorem exists. Define 0= 

3Tl- I,8/N(,8). By Lemma 2.1, we see that 33-, N(,.). Since m2n4 1 N( it), we have 

N( #)2 1 N(3 1uIA) and N(/8)3 I N(3T-1,l/). Since N(/3) 1 S, we see by Lemma 2.2 
that 0 E- [8]. Also, since 0 < X < 3 and F( < 9, we have 0 < < /8 and 
O'O" < /',8/"; thus, B cannot be a relative minimum of 6fR,. [] 

COROLLARY. If B above is not a relative minimum of 6AW1, then e ; 0 = 

3r- Ipu/3/N(/3) is a relative minimum of 6A1 when it = mn2X and X is the least value 
of XI + X2y1 + X3y2 satisfying (3.3), (3.4), and (3.5). 

In the next section we shall limit the possible values for the minimum X which 
satisfies (3.3), (3.4), and (3.5). 

4. Some Lemmas Concerning X. We first give a lemma which limits the possible 
values of X,, X2, X3 with g.c.d.(X1, X2, X3) = 1 for which X satisfies (3.4), (3.5), and 
3 | N(mn2X). 
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LEMMA 4.1. Let X = X1 + X2Y1 + X3Y2, where X1, X2, X3 E Z, g.c.d.(X1, X2, X3) 
= 1, 0 < X < 3, F(x) < 9. If A = mn2X, it E Q[48] and 3 I N(,.t), then values for X1, 
X2, X3 must come from the 21 possible cases given in Tables 1, 2, and 3 below. 

TABLE 1 

1 - 1 2 -1 2 -1 1 

X2 -1 2 1 1 -1 2 1 1 -1 

x3 2 -1 1 -1 1 1 -1 2 1 3 

TABLE 2 

x -1 0 0 2 2 -1 

x 2 0 -1 2 -1 2 

i X3 2 2A I-l o l-1 ?0 

TABLE 3 

. -1 0 0 1 1 

x 2 0 1 1 1 0 1 

I_ 
i __ 

L 
x 

3 
1 0 1 1 1 0 

Proof. Since F(X) < 9, we have IX1 + wX2y1 + w2X3y21 = IX1 + ()2X2yI + 
wOX3y21 < 3. We also have lXI < 3; hence, lX1i, IX2y1i, IX3y21 < 3, and, since y1, 
Y2 > 1, we have IX11, IX21, IX31 < 3. Thus, there are at most 5 X 5 X 5 = 125 
possible values for X. Since 3 I N(,U), we have X1 + am2nX2 + bm,nX3 _ 0 
(mod 3). If any two of X1, X2, X3 are zero, the third must be zero. It follows that we 
can discard 13 of the 125 possible X values. Also, since g.c.d.(X1, X2, X3) = 1, we 
can eliminate 20 more of these possibilities. Since Y2 > -YI > 1 and X > 0, we can 
eliminate 35 more cases and 14 additional ones can be deleted by noticing that 
X < 3. 

Since F(X) = 3X2 - 3X1X + X2 - 3X2X3Y1Y2, it is clear that if X2X3 = -2, then 
F(X) > 9 whenever XA1 # 0, 1. This allows us to reject 10 more cases. Since 

4F(X) = (2X1 - Y1X2 -Y2X3 + 3(X2Y1 - X3Y2)2 < 36, 

we must have 1X2YI - X3-Y21 < 2X. Thus, if X2X3 < 0, we have 1X21y, + 1X21y2 
< 2V3 and, consequently, 

(4.1) 1X2X3J1y1y < 3. 

Therefore, we cannot have X2X3 = -4 and, as a result, we are able to eliminate 
three further cases. We also have 12XA - y1X2 - y2X31 < 6; hence, if X1 = -2 and 
X2, X3 > 0, we must have y1IIX21 + y2iX3i < 2. Since this is not possible, we can 
reject three more possibilities. 
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If X = -2 + Y2 and F(X) < 9, then Y2 < - 1. Since this means that X < ?, 
we cannot have X = -2 + Y2. Similarly, it is not possible to have x = -2 + y, or 
X = -2yl + Y2, and we are able to reject three more cases. 

If, for X = X1 + X2y1 + X3y2, we are to have F(X) < 9, then it is necessary and 
sufficient that 

(4.2) Xi + X2y -36 - 3(X - 2yl) 

< 2X3y2 < X1 + X2yI + 6 - 3(X1X2Y1) 

Thus, if X = 1 - 2yj + Y2 and F(X) < 9, we have 

2Y2 < 1 - 2yl + 36-3(1+2y) 

Since 28y, + 4yl > 32, we have 

2yl > - 2yl +36 -3(1+2y)2 > 2y2, 

which is a contradiction. 
If X = -1 - Y1 + Y2 and 0 < X < 3, then Y2 > Y1 + 1. But 12y 2 + 12yl > 24 or 

9(-Y1 + 1)2 > 36 -3(l1- y,)2; hence, 2(-y, + 1) > -Y-yj-1 + 06 -3(1-l_ 1)2 > 

2Y2 when F(X) < 9. This is also a contradiction. Similarly, if X = -2 - y1 + Y2 > 

0, then Y2 > 2 + Y1. Here we have 2(2 + y1) > -2--y1 + 6-3(2-y 1)2 > 
2Y2 when F(x) < 9. We have eliminated three more cases, and only the 21 cases 
given in Tables 1, 2, 3 remain. [] 

For the case in which we must have X1 am2nX2 bm,nX3 (mod 3), we can 
limit the minimum value of X yet further. We do this in 

LEMMA 4.2. Let it = mn2X E (2[8] and let X be the least positive value of 
X1 + X2Y1 + X3Y2 such that X1, X2, X3 E F, X1 aM2nX2 bm1nX3 (mod 3), and 
F(X) < 9. We can have X < 3 if and only if one of the following is true. 

(i) am2n _ 1, bmIn _ -1 (mod 3), 

2y2 < - - y1 36-3(y 1)2, X= + Y - Y2 

(ii) am2n -1, bmIn 1_ (mod 3), 

22 < 1 -Y1 + 36-3(1+Y)2, X = Y1 + Y2. 

(iii) am2n _ bm,n -1 (mod 3), 

2Y2<-1 +Y1+ 36-3(1+Y)2 X=-1+Y1 +Y2. 

Proof. Clearly g.c.d.(XI, X2, X3) = 1 and none of the XI's can be zero; thus, the 
only possibilities for X1, X2, X3 are those given in Table 1. 

Suppose X3 > 0; if F(X) < 9, then by (4.2) we must have 

(4.3) 2y2X3 - XI - X2y 36 - 3(X1 -X2Y) 

On the other hand, if (4.3) is true for (X1, X2) = (1, - 1), (- 1, 1), (2, - 1), (- 1, 2), 
the left-hand side of (4.3) must exceed zero; hence, 

4F(X) = (2y2X3 - X-X21) + 3(X1 - X2y1)2 < 36. 
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Also, for the above values of X1 and X2 it is easy to verify that 

(X2y1 + X -) X1X2Y1 > 3(X1 + X2yl); 

thus, 

/36 - 3(X1 - y1X2)2 < 6 - 3X1 - 3X2Y1, 

and X3y2 < 3 - X1 - X2y, or X < 3. Hence, since X > 0 for the values of X1 and 
X2 in Table 1 when X3 > 0, we see that, for these values of the X's, we have 
F(x) < 9 and 0 < X < 3 whenever (4.3) is true. 

Suppose X3 < 0 and 

(4.4) 2y2X3 > X1 + Y1X2 -36 - 3(X1 - 2 

We have 

X1 + X2yI - 2X3y2 <36- 3(X1 -YX2) 

For (X1, X2, X3) = (1, 1, - 1), (1, 2, - 1), (2, 1, - 1), we also have X1 + X2y1- 
2X3y2 > 0; hence, 

4F(X) = (2X3y2 - X-X21) + 3(X1 - X2Y) < 36. 

Since X2X3 < 0, we see from (4.1) that 1X2X31yIy2 < 3. Consequently, 
0<x2yI < (X2X3 = -1, -2) and X < 3. We also have X2 + XX2y + X2y 
> 3; therefore, 

9(X1 + yIX2)2 > 36 - 3(X1 - y_X2)2 and X> 0. 

Thus, if X3 < 0 and (4.4) is true, then 0 < X < 3 and F(x) < 9. 
If am2n _ bmIn -1 (mod 3), we must have X1 X3 (mod 3), and no such 

case exists in Table 1. 
If am2n -bmn =-1 (mod 3), then X must be one of XI = 1 - yl + 2Y2' 

X2 = I + 2Yl-Y2, X3=- + Y1 + Y2. Put 4r= -y1 + 1 + 36-3(1 + y1)2, 

2r2 =- -2yl + 36-3(1-2yl)2, 2r3 =-+ +y + 36-3(1 + y,)2. 
From the results proved above, we see that if Y2 < ri, then F(X) < 9 and 0 < X < 
3. Since y, > 1, it can be verified that r3 > r1, r3 > r2 and r2 < 1 + yI/2. If 
X3 > X2. then Y2> 1 + y1/2 > r2 and F(X2)> 9 by (4.2). If X3 > XI, then Y2 < 
2-yl -2; hence, y, < 2yl - 2 and y, > 2. But, if F(X3) < 9, we must have Y2Y1 < 
3, by (4.1), and therefore y, < v3, which is a contradiction. It follows that, if 
either of XI or X2 is such that 0 < X < 3 and F(X4) < 9, then 0 < X3 < X and 
F(X3) < 9; thus, X = X3- 

The values of X for am2n _ 1, bmn --1 (mod 3) and am2n _ -1, bm,n =1 
(mod 3) can be verified in a similar fashion. [] 

As an example of this result, we notice that, if a = 4 + 28 + 7 when D = 10, 
then N(a) = 4 and 4 1 S. We have d, = d4 = d5 = d6 = 1, d2 = 2, d3 = 5 and 
A3 = mIm2n2 = min{4, 5, 20) = 4; hence, 18 = a. Also, am2n = 20 -1 (mod 3) 
and bmin = 2 _ -1 (mod 3), yl = X /2 1.08, Y2 = iX0/2 - 2.32 and 2y2 
< -1 + y1 + 36-3(1 + y,)2 . Thus, B (,i 8 = a) is not a relative minimum of 
6A,. In fact, if 0 = (11 + 58 + 28)/3 = (-4 + 28 + 26) * (4 + 28 + 8)/12, then 
e (; 0) is a relative minimum of 6,1. 

We now limit the possibilities for X when (3.3a) is true but (3.3b) is not. 
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LEMMA 4.3. Let ,u E 28] and it = mn2X, where X is the least positive value of 
X1 + Y1X2 + Y2X3 such that X1, X2, X3 E =, F(yj < 9 and X1 + am2nX2 + 

bmInX3 0 (mod 3). If it is not the case that X1 am2nX2 = bm,nX3 (mod 3), then 

x < 3 if and only if one of the following is true. 
(i) am2n bm,n 1 (mod 3), yl <(\33 - 1)/2. In this case X is one of y1-1 

or Y2 - Y1; 

(ii) am2n bmIn -1 (mod 3), yI < 2. In this case X is one of Y2 -yl, 2 -y, 

1 + yj; 

(iii) am2n 1, bmln _ -1, yl <(\33 - 1)/2. In this case x = -1 + y1; 
(iv) am2n -1, bm,n =1 (mod 3), y1 < (\33 - 1)/2 or y, < 2. In this case X 

is one of - 1 + Y2, 2 - y Ior 1 + y1. 

Proof. We can assume once again that g.c.d.(X1, X2, X3) = 1. Thus, from Lemma 
4.1 we can only have values for X1, X2, X3 given by those in Tables 2 and 3. Also, if 
the values of X1, X2, X3 (X3 7# 0) are selected from Table 2, then, in order for 
FCx) < 9, we must have Y2 < 2. 

The proofs of the remaining cases are similar to the following proof of case (iii); 
thus, we will only prove this case of the lemma here. If am2n -1, bmin n -1 

(mod 3), the only possible values for X1, X2, X3 are given in Table 4 below. 

TABLE 4 

X -1 0 1 - 1 

X2 1 1 2 0 

IX3 11 ? 1 1 2 12 11 -111 

If yl > (33- 1)/2, then F(- 1 + y1) > 9 and X # -1 + y1; also, since Y2 > 
y,, we see that X cannot be given by any of the remaining possibilities for X1, X2, 
X3 in Table 4. 

If Y1 < (V -1)/2, then F(-1 + y1) < 9 and O < -1 + Y1 < 3; thus, X 
could be -I + yI. Since -1 + Y1 < 1 + Y2 < Y1 + Y2 and -1 + yI < -YI + 2Y2 

< -1 + 2y2, we see that X # 1 + Y2, YI + Y2, -Y1 + 2y2 or -1 + 2Y2. Also, if 

F(2Y1- Y2) < 9 or F(2 - Y2) < 9, then Y2 < - 1. If this is so, then Y1 + Y2 < 
3 and -1 + yl < 2 - Y2 < 2yl - Y2 Thus, we can only have y = -1 + y, when 

y < (3 - 1)/2. E1 
As an example, we mention that if D = 22 and a = 196 + 708 + 250, then 

N(a) = 36 and 36 1 S. We find here that T = 2, d, = d4 = d5 = d6 = 1, d3 = 11, 

d2= 2. Also, A3= 32min{4, 11, 2.112 =36, =a, m = 1, n =2, Y1 22 /2 
- 1.40, Y2 = ~ /2 - 3.93, am2n = 44 _ -1 (mod 3), bm,n = 2 _ -1 (mod 3). 

Since y, < 2, we have the result that B f8 cannot be a relative minimum of 6L1. 

Further, 2- yj < 1 + Yl < Y2-Y1 and F(2-yl) < 9; hence, X = 2- y. If 
0 = 3 * 4 * (2 - -y),81/n(,8), then 0 = 39 + 148 + 50 and e (0 0) is a relative 
minimum of 6A,. 

5. The Main Results. Results for the pure cubic case which are analogous to (1.2) 
in the quadratic case will be presented in Theorem 5.4; however, we must first 
prove 



SOME RESULTS CONCERNING VORONOI S CONTINUED FRACTION 643 

THEoREM 5.1. Let a E ?2[8] and N(a) I S. Put N(a) = 3Td1d4d22d52, where a = 

d,d2d3, b = d4d5d6 and let X3/3' = m1m2n2 = min{d,d4d22d52, d3d5d,2d62, d2d6d42d32}, 
where ml I a, m2 I b. If yl = min{ /m2n, O/mjn} and Y2 = max{O/m2n, O/m1n}, 

then B (- f8 = Xa/N(a)1/3) is a relative minimum of 6J1 if 
(i) D ?+1 (mod 9) and T = 0, 
(ii) D-= ?I(mod 9) andY2 > V6, 
(iii) D ?+1 (mod 9), = 1, and y2 > V6 
(iv) D - ?1 (mod 9), T = 2, and y, > (V3 - 1)/2. 

Proof. We saw in Section 3 that (i) is true. If B is not a relative minimum of 6A,, 
there must exist a X as described in Theorem 3.4. It is a simple matter to verify that 
if Yj > 1, we must have 

-1 - yl + 36 -3(yJ _ 1)2 < 4, 1 - yl + _63(y1 + 1)2 < 2V, 

-1 + 6 -3(Y1+ 1)2 < 2V . 

Thus, in cases (ii) and (iii) above, we see, by Lemma 4.2, that we cannot have a X 
value as specified by Theorem 3.4. Hence B must be a relative minimum of 6A,. 

If yl > (V3 - 1)/2, we have -1 + Y1 + Y2 > 3. If F(x) < 9 and X = 1 + yl 
-Y2 or 1-Yl + Y2, then y, < v by (4.1). Thus, in case (iv), we cannot have 

Xi = am2nX2 bm,nX3 (mod 3). But, if it is not true that X1 am2nX2 _ bm,nX3 
(mod 3), we see, by Lemma 4.3, that we cannot have a X value satisfying the 
properties specified by Theorem 3.4. It follows that if T = 2 and y1 > 
(V33 - 1)/2, then B is a relative minimum of 6, [1 

It should be mentioned here that conditions (ii), (iii), and (iv) of Theorem 5.4 are 
only sufficient conditions for B to be a relative minimum of 6jPu. In any individual 
case one should consult the more detailed results of Lemmas 4.2 and 4.3. 

We will now attempt to describe when we have Eo = Ok3/N(Ok), where ok (Z 0k) 

is a member of the chain (3.1) of relative minima of 6fi with 91 = (1, 0, 1). In 
order to do this we require Theorem 5.3; however, we first prove 

LEMMA 5.2. If 9 (z 0 > 0) is a relative minimum of 6A, then 4 (" ) = eoO", 
n E ?) is also a relative minimum of '. 

Proof. If 4 is not a relative minimum of 9i~, there must exist a y (> 0) such that 
y E 2[8] and y < 4 and y'y" < )')". That is, y <%eO and y'y" < (e"eg)'0'0". If 
we put p = eO ny E 248], we see that 0 < p < 0 and p'p" < O'0 ". This contradicts 
the given fact that ( is a relative minimum of 6sb; thus, 1D is a relative minimum of 
'(t1.LC1 

Note that since N(? eO")= +N(0), we can say that, if we have any relative 
minimum e of 6A, (;ze 0), then there exists a relative minimum 1) (Z 4) in the 
chain (3.1) of relative minima of 6A% such that N(0) = IN(0)I. 

The following theorem is an extension of Lemma 6 of [14]. 

THEOREM 5.3. Suppose ' (z ip) and (D 4)) are relative minima of 6A, such that 
N(0) 7# N(4.), N(0), N(P) 7# 1, N(0) I S and N(4p) I S. If ok (Z Ok) is the first 
element in the chain (3.1) of relative minima of 6A with 91 = (1, 0, 1) such that 
N(Ok) I S, then E0 = 0k/N(0k). 
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Proof. Since N(%), N(0) # 1, we must have e 'i < + <e g 6', 2 < 4 < 6)2+ 

for some ml, C2 E Z. Thus, if A* = 8 0m4, )* = 80-m20, then A*, 4* E p24] and 
1 <4,* <8E, 1 < * <Eo. By Lemma 5.2, (* (z 9*) and 4D* (z 4p*) are relative 
minima of 6A; hence they must be in the chain (3.1). Further, there must exist a 
least Ok (z Ok) in the chain (3.1) such that N(Ok) I S and 1 < Ok < 60. Now 

N(k3,/N(9k)) = N(,4*3/N(4,*)) = N(4)*3/N(4*))= 1; 

hence, 

9k3/N(9k) = ',nj 4*3/N(|4*) = no2 0*3/N(4p*) =n3 

where n,, n2, n3 E %Z. Since, Ok' ,*, 4* <%E, we see that ni < 2 (i = 1, 2, 3). Also, 

9iaic" 3N( * < 1; thus, 9,3/N(9k), 4i*3/N(4i*), 4p*3/N(4p*) > 1 and ni > 1 
(i= 1, 2, 3). 

Since N(xp*) 7# N(4p*), we may assume with no loss of generality that A* < 4*. 
Thus, since 4* is a relative minimum of 6Rt, we must have A > 0*'O*" and 

Xp*3/N(xp*) < 4*3/N(O*). It follows that Xp*3/N(xp*) = co and 0*/N(0*) = e 2. By 
definition of Ok, we must have Ok < x*. Since k3/fN(Ok) < Xp*3/N(xp*) and 

k3,/N(9k) cannot be less than co we see that co = 9k3,N(Ok). F] 
We remark here that we have shown that there can be at most two elements Ei 

(z 9,) and Oj (z 9>) in the chain (3.1) of relative minima of 65R1 with (31 = (1, 0, 1) 
such that 9i, Oj <8% and N(9,) I S, N(9j) I S. 

If 3k (t Ok) is the least element in the chain (3.1) of relative minima of 6A, with 
E) = (1, 0, 1) such that N(Ok) I S, then it can occur that eo $# 9k31/N(k). In these 
cases we get eo2 = 9k3/N(9k). For example, this occurs when D = 14, 52, 77, 92, etc. 

However, we are able to prove 

THEOREM 5.4. Let ok (t Ok) be the least relative minimum in the chain (3.1) of 
relative minima of ?t with E), = (1, 0, 1) such that N(Ok) I S and N(Ok) # 1. If 
N(Ok) = 3Ydd4d22d.2, where a = d1d2d3, b = d4d5d6, let 

2 mi dd2d2 dd2d2 dd2d2 m mn = minf d d2d d 24, d d d 2d2, dl d6d32d2} InM2n ~ 252 4, 3 4 2 6' 

where ml I a and M2 I b. Put Y1 = min{3/M2n, /minln), Y2 = max{6/M2n, 9/imn). 
We have co = 9k3/,N(9k) if any of the following is true: 

(i) D 52 ?+1 (mod 9), T = O, 
(ii) D-= ?I(mod 9), Y2 > V& 
(iii) D ?+1 (mod 9), T = 2, Y2 > V'4 

(iv) D ?+1 (mod 9), T = 1, Y1 > (V3 - 1)/2. 

Proof. Put a = 9k2&d2d5 when T = 0, 1 and put a = 9k2/3d2d5 when T = 2. We 
have a E f[3], N(a) = 3^d2d5d2d42, where 

O when T = 0, 

v={ when T = 2, 
2 when T = 1, 

and N(a) I S. If we define /8 as in Lemma 2.4, we have N(/3) I S and we see, by 
Theorem 5.1, that B (z /8) must be a relative minimum of 6JR1. If T > 0, we have 
(3, ab) = 1 and therefore N(f3) # N(Ok), N(f3) # 1. Suppose T = 0. Since N(/3) = 

Mim2n2, a and b are square free and N(Ok) 7# 1, we see that, if N(/3) = N(Ok) or 
N(/3) = 1, we must have N(Ok) = ab2 or a2b. By Lemma 3.3, this is not possible; 
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thus, N(Ok) # N(/8), N(/8) # 1, N(Ok) # 1 and N(/8) I S, N(Ok) I S. By Theorem 
5.3, we get Eo = Ok3/N(Ok). EI 

6. Some Special Results. It has already been noted in [14] that, when ab is a 
prime or the triple of a prime, Voronoi's algorithm can be used to find values of 
a E 2[8] such that N(a) I S. We show in this section how the more general results 
of Sections 4 and 5 can be used to find such values of a when ab is the product of 
two distinct primes. In these cases we also characterize some values of a and b for 
which Eo = Ok3/ N(Ok), where ek (t Ok) is the least relative minimum of 6A, such 
that Ok > 1 and N(Ok) I S. In this section we use the symbols p and q to denote 
distinct primes in %Z. 

THEOREM 6.1. Let D = pq ?1 (mod 9). If D > 10 and N(a) = p is solvable 
for a E 2[8], there exists a relative minimum B (8/3) in 6AJ, such that N(/3) I S. 
Further, if ok (t Ok) is the least relative minimum in the chain (3.1) with 0 = 

(1, 0, 1) such that N(Ok) I S, then Eo = Ok3/ N(Ok). 

Proof. Since N(a) = p, we have d, = p, d2 = 1, d3 = q, d4 = d5 = d6 = 1, = 0 
and 

m1m2n2 = X3 = min{p,p2q, q2} = min{p, q2}. 
3 3 

If p < q2, then X3 = p, mI = pIm2 = n = 1 and Y2 = max{\f<, N 2/p). 
Supposingpq > 10, we see that p > V6 and Y2 > 6 . Thus, by Theorem 5.1, 
B1 z 81 = a is a relative minimum of 6sb. 

If p > q2, we have ;Q = q2, ml = m2 = 1, n = q, Y2 = max{(V/p- /q, p /q) 

3w /q. Sincep >q2, we havep2 >q4 > (V )3q when q > V6. If q = 2, 
then, sincepq > 10, we must have q > 13 andp2 > 2(V6 )3 = (V6 )3q. 

Thus, we have Y2 > V6, and B2 (0 /82 = Xa/p 1/3) is a relative minimum of 6A, 
and N(,82) I S. 

We next consider a2. We have N(a2) = p2 and d, = 1, d2 = p, d3 = q, d4 = d5= 

d= 1, m1m2n2 =3 = min{p2, q, q2p) = min{p2, q). If p2 < q, then X3 = p2, mI 

=1l, m2 = 1, n =p and Y2 = max{V/pq/p, 2 /p). We have already seen that 

wp 2q2 /p > v?; hence, B3 (8 /33 = a2) is a relative minimum of 'R1. 
If p2 > q, then X3 = q, ml = q, m2 = 1, n = 1, 

Y2 = max{ -pE,v 7 /q} > V ; 
thus, B4 (> /34 = p/q a/p) is a relative minimum of 6.,1. 

We have now shown that one of B1 or B2 and one of B3 or B4 are relative 
minima of 6Rit. Further, N(/81) = p, N(f32) = q2, N(/33) = p2, N(/34) = q; hence, 
no two of these norms are equal and none of them is 1. The theorem now follows 
from Theorem 5.3. [1 

We also have 

THEOREM 6.2. Let D = pq2 I +1 (mod 9). If N(a) = p is solvable for a E 8]1 
there exists a relative minimum B (z /3) in 6 such that N(/3) I S. Further, if ok 

(t Ok) is the least relative minimum in the chain (3.1) with E = (1, 0, 1) such that 
N(Ok) I S, then Eo = Ok3/ N(Ok). 
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Proof. Similar to the proof of Theorem 6.1. E1 
In [2] it was shown that if D has no prime factor =1 (mod 3) and D has at least 

one prime factor -2 or 5 (mod 9), then there exists a principal factor of A. Now if 
D = pq ? 1 (mod 9), the only possible principal factor set is 

{p,p2q, q2,p2, q,pq2}, 
and if D = pq2 ? 1 (mod 9), the only possible principal factor set is 

{p, q,p2q2p2 q2pq); 

thus, if D = pq with p -2, q 5 (mod 9) or if D = pq2 with p q -2 or 5 
(mod 9), we have a solution a E 2[ ] such that N(a) = p. 

Those fields f2l] for which 3 is not a divisor of the class number of 2(S) are 
given by (Honda [7]) 

(i) D = 3, 
(ii) D = p, p =-1 (mod 3), 
(iii) D = 3p or 9p, where p 2, 5 (mod 9), 
(iv) D = pq, wherepp 2, q 5 (mod 9), 
(v) D = pq2, where p q _ 2, 5 (mod 9). 

If D #p =8 (mod 9), we know from [14] that in cases (ii) and (iii) we have 
EO= k3/N(Ok), where ok (0 O,) iS the least element of the chain (3.1) with 

1= (1, 0, 1) such that N(Ok) = 3 or 9. We also know that such a ek will always 
exist in these cases. We have now seen by Theorems 6.1 and 6.2 that if D is given 
by cases (iv) or (v), there always exists a least ok (t Ok) in the chain (3.1) such that 
N(Ok) I S and for this Ok we have EO = Ok3/N(Ok). This observation allows us to 
calculate the regulator of 2(8) (see [14]) about 3 times faster than it would take by 
using the method of going through the entire set of relative minima of (3.1) until On 
(- 0n) was found such that N(0n) = 1. Once the regulator has been determined it is 
not very difficult to calculate the class number h(D) of 2(8) (see Barrucand, 
Williams, and Baniuk [3]; the Euler product method was used here). In Table 5 
below, we present the frequency f(h) of each class number h = h(D) for all 16843 

2 (~- ) such that 3 1 h(D), D = ab2 < 2 X 105, and a > b. In the third column of 
this table, we give the least D such that 2( C') has the h in the first column as its 
class number. 

TABLE 5 

h f(h) D 

1 8230 2 

2 4136 11 

4 1700 113 

5 50 7 26 3 

7 2 75 2 35 

8 5 87 141 

10 22 4 30 3 

11 79 2 348 

13 47 1049 

14 98 514 

16 185 681 
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TABLE 5 (continued) 

h f(h) D 

17 27 8511 

19 32 667 

20 106 761 

22 42 281 

23 16 21241 

25 14 10181 

26 23 3403 

2 8 59 509 

29 9 120 79 

31 5 16553 

32 37 2 399 

34 18 1719 

35 9 3720 7 

37 7 5545 

38 13 12813 

40 27 2733 

41 7 6659 

43 6 32847 

44 16 4817 

46 9 599 75 

47 1 198377 

49 5 8171 

50 14 14372 

52 15 479 3 

53 4 38373 

55 3 14725 7 

56 14 85 7 

58 7 6814 

59 1 95905 

61 2 36161 

62 3 42407 

64 12 9749 

65 2 88169 

6 7 4 140 73 

68 4 9521 

70 4 346 7 

71 3 3539 

73 2 133709 

74 5 3581 

76 7 2 3469 

77 2 1 34189 
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TABLE 5 (continued) 

h f(h) D 

79 2 61741 

80 10 4799 

83 1 17362 

85 3 10783 

86 4 4340 3 

88 2 132011 

89 3 64882 

92 2 15131 

95 4 15 79 7 

97 1 131302 

98 2 130859 

100 6 31547 

101 3 48767 

104 7 11549 

107 1 180298 

110 5 17333 

112 5 11665 

115 1 99973 

118 2 4709 3 

119 1 19 700 3 

121 1 57543 

122 1 160345 

124 2 35 349 

125 1 1895 75 

12 7 2 2 741 

128 4 5987 

130 1 10 3429 

136 4 3209 

139 1 143326 

140 4 3626 3 

148 3 60149 

149 2 52737 

152 2 118113 

154 2 9041 

155 1 36107 

158 1 66813 

160 1 168092 

161 3 95001 

170 1 45321 

173 1 139109 

175 2 5711 
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TABLE 5 (continued) 

h f (h) D 

181 1 12251 

182 1 115751 

188 1 119921 

190 1 19 3247 

191 1 47639 

193 2 46783 

196 1 10522 

200 4 1219 7 

202 1 158867 

214 3 16823 

224 1 103627 

230 1 4451 

2 32 2 8409 3 

248 1 194811 

254 1 8002 

259 1 148763 

262 1 28979 

263 1 164737 

268 1 112757 

2 80 1 35969 

284 1 25913 

296 1 26601 

305 1 39821 
316 2 39106 

319 1 171629 

329 1 183347 

334 2 87257 

340 1 18257 

352 1 51549 

358 1 27329 

370 1 73779 

389 1 24023 

392 1 67157 

400 1 53434 

421 1 47303 

431 1 114221 

433 1 69539 

490 1 169007 

559 1 114833 

581 1 192754 

583 1 63766 
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TABLE 5 (continued) 

h f (h) D 

595 1 185957 

628 1 61547 

698 1 30 867 

706 1 26991 

746 1 195581 

748 1 17573 

788 1 101539 

827 1 97066 

904 1 131084 

920 1 17579 

958 1 140897 

980 1 38463 

1190 1 74079 

1201 1 128879 

1312 1 133251 

1442 1 32771 

1484 1 79601 

1640 1 54874 

1760 1 125002 

2327 1 141269 

2380 1 54869 

2599 1 167087 

5431 1 161879 

5623 1 125003 

If D = pq 5 ?1 (mod 9) (p, q # 3), there are four possible principal factor 
sets. These are 

{3, 3pq, 3p2q2, 9, 9pq, 9p2q2}, 
{p p2q q2 p2 q q2p, 

{3p, 3p2q, 3q2, gp2, 9q, 9q2p}, 

{3q, 3q2p, 3p2, 9q2, gp2q, gp} 

If one of p or q is _ 2 or 5 (mod 9) and the other is -1 (mod 3), we know that 
there must exist a principal factor of A. If this principal factor is in either of the 
first two sets, then it is a simple matter to show that E0 = Ok3/N(Ok), where Ok has 
the usual meaning assigned to it in this section. Also, such a Ok must exist. We now 
describe what happens when the principal factor is in either of the other two sets. 

THEOREM 6.3. If D is given as above and N(a) = 3p (3q) is solvable for some 
a E 2[6], there exists a relative minimum B (w /3) of 6I such that N(/3) I S. 
Further, if q > 8p2 and 9k (- Ok) is the first element of the chain (3.1) such that 
N(Ok) I S, then Eo = Ok3/N(Ok). 
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Proof. The proof of the first part of this theorem is similar to that of Theorem 

6.1. In fact, we show that one of B1 (x a) or B2 (x f32 = 3 VD2 a/N(a)) must be 
a relative minimum of 'R,. 

If we have N(a2) = 9p2, then d = 1, d2 = p, d3 = q, d4 =d5 = d6= 1, T = 2, 
m1m2n2 = min{p2, q, q2p) = p2 when q > 8p2. Hence m =M2 = 1, n = p, and 

am2n -bmn _ -1 (mod 3). We also have Y1 = min{'Yp /p, q/p) 
3 

' /p > 2. By Lemma 4.3, we see that B3 (; a2) is a relative minimum of 6R1. 
If we have N(a2) = 9q2, then d, = 1, d2 = q, d3 = p, d4 = d5 = d6 = 1, T = 2, 

mlm2n2 = min{q2, p p,2q) = p. Also, y1 = min{ pq , > /p} . Since 

'Vpq > 2p > (V - 1)/2 and q2 >64p4>(( )/2) p 

we have y, > (V\/ - 1)/2, and B4 (; /34 = a pq /q) is a relative minimum of 
R,. Since N(,81) = 3p (3q), N(f82) = 3q2 (3p2), N(f3) = 9p2, N(,84) = 9p are all 

distinct, the theorem follows from Theorem 5.3. EJ 
Thus, we have seen that if D = pq, where p _ q -1 (mod 3), one of p, q 

2, 5 (mod 9) and q > 8p2, then there exists Ok as described above and ok3/N(Uk) = 

,e. We remark here that restriction q > 8p2 can be replaced by the restriction 
q > 8p2 - 3. This is simply because q must be a prime and q -1 (mod 3). This 
inequality is actually sharp for p = 2 and p = 5. For, when D = 2 * 29 or 5 * 197, 
we find that ,k31/N(Ok) = 02. 

We can also show that if D = pq2, where p > ((V-3 - 1)/2)3q, p _ q -1 
(mod 3) and one of p, q is congruent to 2 or 5 (mod 9), then there exists a least 0k 
(; Ok) of the chain (3.1) such that N(Gk) I S. Also, e0 = k3I/N(Gk) here. 

We conclude by pointing out that, although the ordinary continued fraction 
algorithm for Vid always finds a principal factor (as a norm of A>_ + Vd Bj l) 
whenever one exists, Voronoi's algorithm does not always do this. For example, 
when D = 850, we find that N(a) = 150 and 150 1 S for a = 180 + 198 + 106; 
however, the only er in the chain (3.1) such that N(O,) I S has N(O4) = 1. 
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